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The Plan

e Very brief overview of our work
e Introduction to SVMs
e Our algorithm

e Examples



Our DOE-supported research program

Goal: Develop efficient algorithms for optimization problems having a large
number of inequality constraints.

Example applications:

e Semi-infinite programming: problems with pde constraints.

e Training support vector machines.



Progress:

e Efficient implementation of an interior point method (IPM) for solving
linear programs on a GPU (= graphical processing unit).
(Jung, O'Leary) (poster)

e Adaptive constraint reduction algorithms for linear (poster) and
quadratic programming problems.
(Stacey Nicholls, Luke Winternitz, Jung, O'Leary, Tits)

e Simple conditions on the “constraint matrices” and cone for a pair of
dual conic convex programs, under which the duality gap is zero for
every choice of linear objective function and “right-hand-side”.

(Simon Schurr, O’Leary, Tits)

e Convex duality and entropy-based closure in gas dynamics.
(Cory Hauck, Tits, David Levermore) (poster)

e A polynomial-time interior-point method for conic optimization, with
inexact barrier evaluations. (Schurr, O'Leary, Tits) (poster)

e SVM training (Jung, O’Leary, Tits) (this talk)
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The problem

Given: A set of sample data points a;, in sample space S, with labels
di==x1,1=1,...,m.
Find: A hyperplane {x : (w,x) —~ = 0}, such that

sign({w, a;) —7) = di,

or, ideally,

di(<w,ai> — ’7) Z 1.




Which hyperplane is best?

We want to maximize the separation margin 1/||w|].




Generalization 1

We might map a more general separator to a hyperplane through some
transformation ®:

For simplicity, we will assume that this mapping has already been done.



Generalization 2

If there is no separating hyperplane, we might want to balance maximizing
the separation margin with a penalty for misclassifying data by putting it
on the wrong side of the hyperplane. This is the soft-margin SVM.

e We introduce slack variables y > 0 and relax the constraints
di((w,a;) —v) > 1to

di((w,a;) =) 21—y,

e Instead of minimizing ||w||, we solve

1
min ~||wlf; + re’y
W777y

for some 7 > 0, subject to the relaxed constraints.



Classifier (w,x) — = 0: black line
Boundary hyperplanes: dashed lines
2 X separation margin: length of arrow

Support vectors: On-Boundary (yellow) and Out-of-Bound (green)
Non-SV: blue

Key point: The classifier is the same, regardless
of the presence or absence of the blue points.
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More jargon

e The process of determining w and -y is called training the machine.

e After training, given a new data point X, we simply calculate
sign({w,x) — ) to classify it as in either the positive or negative group.

e This process is thought of as a machine — called the support vector

machine (SVM).

e We will see that training the machine involves solving a convex
quadratic programming problem whose number of variables is the
dimension n of the sample space and whose number of constraints is
the number m of sample points — typically very large.
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Primal and dual

Primal problem:
miny 4y 5| W3 + 7€’y
st. D(Aw —ev)+y > e,
y > 0,

Dual problem:
maxy —%VTHV +elv
st. e'Dv =0,
0<v<re,

where H = DAAYD € R™ "™ is a symmetric and positive semidefinite
matrix with

hz'j = dz-dj(a@-, aj>.
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Support vectors

Support vectors (SVs) are the patterns that contribute to defining the
classifier.

They are associated with nonzero v;.

Ui Si Yi
Support vector 0,7]] 0 ]0,00)
On-Boundary SV | (0,7)| 0 0

Out-of-Bound SV | 7 0 |(0,00)
Nonsupport vector 0 [(0,00)| O

e v;: dual variable (Lagrange multiplier for relaxed constraints).
e s;: slack variable for nonnegativity of v;; i.e., s;v; = 0.

e y;: slack variable in relaxed constraints.
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Solving the SVM problem

Apply standard optimization machinery:
e Write down the optimality conditions for the primal/dual formulation
using the Lagrange multipliers. This is a system of nonlinear equations.

e Apply a (Mehotra-style predictor-corrector) interior point method (IPM)
to solve the nonlinear equations by tracing out a path from a given
starting point to the solution.
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e At each step of the IPM, the next point on the path is computed using
a variant of Newton's method by solving the linear system of equations

M Aw = some vector

(sometimes called the normal equations), where

M=I+A"DQ DA — dd’
N dTQ-1d
Here, D and  are diagonal, d = ATDQ~'d, and

-l vi(T — ;)
S;U; + yz'(T — Uz')

1
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dd”

Examining M =1+ A’DQ'DA — 4T0-14d

Our approach is to modify Newton's method by using an approximation to
the last two terms.
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Note that the middle term is

ATDOQ DA = Z—az

zlZ

We only include certain terms corresponding to the large values of wz-_l
We could choose:

e patterns a; with smallest distance to the class boundary hyperplanes.

e patterns a; with smallest “one-sided” distance to these hyperplanes.

e patterns with largest wz-_l.

We could

e ignore the value of d;.

e balance the number of positive and negative patterns included.
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Some related work

e Use of approximations to M in LP-IPMs dates back to Karmarkar
(1984), and adaptive inclusion of terms was studied, for example, by

Wang and O’Leary (2000).

e Osuna, Freund, and Girosi (1997) proposed solving a sequence of CQPs,
building up patterns as new candidates for support vectors are identified.

e Joachims (1998) and Platt(1999) used variants related to Osuna et al.

e Ferris and Munson (2002) focused on efficient solution of normal
equations.

e Gertz and Griffin (2005) used preconditioned cg, with a preconditioner
based on neglecting terms in M.
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Test problems

Provided by Josh Griffin (SANDIA)

Problem n Patterns (+,—) SV (+,—) In-bound SVs (4, —)

mushroom 276  (4208,3916)  (1146,1139) (31,21)

solet 617  (300,7497)  (74,112) (74,112)
waveform 861  (1692,3308) (633,638 (110,118)
letter-recog 153 (789,19211)  (266,277) (10,30)

The number of iterations was almost constant, regardless of algorithm
variant, so we measure time for solution (MATLAB).

We used the balanced selection scheme.
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Comparison with other software

Problem Type | LIBSVM SVMLIGHT MATLAB Ours
mushroom Polynomial 5.8 52.2 1280.7
mushroom Mapping(Linear) 30.7 60.2 710.1 42

isolet Linear 6.5 30.8 323.9 20.1

waveform Polynomial 2.9 23.5 8404.1

waveform Mapping(Linear) 33.0 85.8  1361.8 16.2
letter Polynomial 2.8 55.8 2831.2
letter Mapping(Linear) 11.6 45.9 287.4 135

e LIBSVM, by Chih-Chung Chang and Chih-Jen Lin, uses a variant of
SMO (by Platt), implemented in C

e SVMLIGHT, by Joachims, implemented in C

e MATLAB's provided program is a variant of SMO.

e Our program is implemented in MATLAB, so we would expect a

speed-up if converted to C.
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How our algorithm works

To visualize the iteration, we constructed a toy problem with

on =2,

e a mapping P corresponding to an ellipsoidal separator.

We now show snapshots of the patterns that contribute to M as the [PM
iteration proceeds.
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lteration: 2, # of obs: 1727
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lteration: 5, # of obs: 1440
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Iteration: 8, # of obs: 1026

25



lteration: 11, # of obs: 376
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Iteration: 14, # of obs: 170
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lteration: 17, # of obs: 42
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lteration: 20, # of obs: 4
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lteration: 23, # of obs: 4
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Conclusions

e We have succeeded in significantly improving the training of SVMs that
have large numbers of training points.

e Similar techniques apply to general CQP problems with a large number
of constraints.

e Savings is primarily in later iterations. Future work will focus on using
clustering of patterns (e.g., Boley and Cao (2004)) to reduce work in
early iterations.

e We are seeking additional classification problems of interest to DOE.
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